Hyperthermal chaotic photodesorption of xenon from alumina-supported silver nanoparticles: plasmonic coupling and plasmon-induced desorption.
نویسندگان
چکیده
Excitation of Xe monolayers on alumina-supported silver nanoparticles (AgNPs) by laser light in the (1,0) Mie plasmon resonance can lead to desorption of Xe atoms with hyperthermal energy and chaotic time structure. The chaotic behavior is most likely due to plasmonic coupling between AgNPs. We argue that the desorption is induced by direct energy transfer to the adsorbate from the Pauli repulsion of the collectively oscillating electrons of the plasmon at the surface. A simple model calculation shows that this is possible. A connection between both effects appears likely.
منابع مشابه
Adjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کاملSize effects in thermal and photochemistry of (NO)2 on Ag nanoparticles.
NO dimers adsorbed on alumina supported silver nanoparticles (Ag NPs, radii R approximately 1-6 nm) show decreasing desorption temperatures and complex behavior of photoinduced desorption with decreasing NP size. In particular, for resonant excitation of the (1,0) Mie plasmon at 3.5 eV the photoinduced desorption cross section increases with 1/R, showing a pronounced enhancement (40 times) at R...
متن کاملNanoscale Control of Molecular Self-Assembly Induced by Plasmonic Hot-Electron Dynamics.
Self-assembly processes allow designing and creating complex nanostructures using molecules as building blocks and surfaces as scaffolds. This autonomous driven construction is possible due to a complex thermodynamic balance of molecule-surface interactions. As such, nanoscale guidance and control over this process is hard to achieve. Here we use the highly localized light-to-chemical-energy co...
متن کاملGreen preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents
Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the r...
متن کاملEnhanced photoinduced desorption from metal nanoparticles by photoexcitation of confined hot electrons using femtosecond laser pulses.
Strong fluence dependence of photodesorption cross sections is observed in femtosecond laser photodesorption of NO from (NO)2 on silver nanoparticles, in contrast to femtosecond photodesorption on bulk metals. The time scale of excitation buildup is found to be equal or less than the pulse duration of ∼100 fs; NO translational energies are independent of fluence and pulse duration. We propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 99 22 شماره
صفحات -
تاریخ انتشار 2007